6,778 research outputs found

    High Levels of Circularly Polarized Emission from the Radio Jet in NGC 1275 (3C 84)

    Full text link
    We present multi-frequency, high resolution VLBA circular polarization images of the radio source 3C 84 in the center of NGC 1275. Our images reveal a complex distribution of circular polarization in the inner parsec of the radio jet, with local levels exceeding 3% polarization, the highest yet detected with VLBI techniques. The circular polarization changes sign along the jet, making 3C 84 also the first radio jet to show both signs of circular polarization simultaneously. The spectrum and changing sign of the circular polarization indicate that it is unlikely to be purely intrinsic to the emitted synchrotron radiation. The Faraday conversion process makes a significant and perhaps dominant contribution to the circular polarization, and the observed spectrum suggests the conversion process is near saturation. The sign change in the circular polarization along the jet may result from this saturation or may be due to a change in magnetic field order after an apparent bend in the jet. From the small spatial scales probed here, ~ 0.15 pc, and the comparably high levels of circular polarization inferred for the intra-day variable source PKS 1519-273, we suggest a connection between small spatial scales and efficient production of circular polarization.Comment: 4 pages, accepted in ApJ Letter

    MOJAVE: Monitoring of Jets in AGN with VLBA Experiments. IV. The Parent Luminosity Function of Radio-Loud Blazars

    Get PDF
    (Abridged) We use a complete sample of active galactic nuclei (AGN) selected on the basis of relativistically beamed 15 GHz radio flux density to derive the parent radio luminosity function (RLF) of bright radio-selected blazar cores. We use a maximum likelihood method to fit a beamed RLF to the observed data and thereby recover the parameters of the intrinsic (unbeamed) RLF. We analyze two subsamples of the MOJAVE sample: the first contains only objects of known FR II class, with a total of 103 sources, and the second subsample adds 24 objects of uncertain FR class for a total of 127 sources. Both subsamples exclude four known FR I radio galaxies and two gigahertz-peaked spectrum sources. We obtain good fits to both subsamples using a single power law intrinsic RLF with pure density evolution function. We find that a previously reported break in the observed MOJAVE RLF actually arises from using incomplete bins (because of the luminosity cutoff) across a steep and strongly evolving RLF, and does not reflect a break in the intrinsic RLF. The derived space density of the parent population of the FR II sources from the MOJAVE sample (with L>1.3e25 W/Hz) is approximately 1600/Gpc^3.Comment: 31 pages, 7 figures and 2 tables. Accepted for publication in ApJ. Changes: classification of sources based on radio morphology instead of optical classes; added the parameters of the RLF of the FR II sources; added more explanations; added a table listing the sample sources; added 2 extra figures related to the observed break in the RLF; updated reference

    Concurrent 43 and 86 GHz Very Long Baseline Polarimetry of 3C273

    Full text link
    We present sub-milliarcsecond resolution total intensity and linear polarization VLBI images of 3C273, using concurrent 43 and 86 GHz data taken with the Very Long Baseline Array in May 2002. The structure seen in the innermost jet suggest that we have fortuitously caught the jet in the act of changing direction. The polarization images confirm that the core is unpolarized (fractional polarization m < 1 %) at 86 GHz, but also show well ordered magnetic fields (m ~ 15 %) in the inner jet, at a projected distance of 2.3 pc from the core. In this strongly polarized region, the rotation measure changes across the jet by 4.2 x 10^{4} rad m^{-2} over an angular width of about 0.3 milliarcseconds. If the lack of polarization in the core is also attributed to a Faraday screen, then a rotation measure dispersion > 5.2 x 10^{4} rad m^{-2} must be present in or in front of that region. These are among the highest rotation measures reported so far in the nucleus of any active galaxy or quasar, and must occur outside (but probably close to) the radio emitting region. The transverse rotation measure gradient is in the same sense as that observed by Asada et al and by Zavala and Taylor at greater core distances. The magnitude of the transverse gradient decreases rapidly with distance down the jet, and appears to be variable.Comment: 4 pages, LaTeX, 3 postscript figures, submitted to Astrophysical Journal Letter

    Flaring Activity of Sgr A* at 43 and 22 GHz: Evidence for Expanding Hot Plasma

    Full text link
    We have carried out Very Large Array (VLA) continuum observations to study the variability of Sgr A* at 43 GHz (λ\lambda=7mm) and 22 GHz (λ\lambda=13mm). A low level of flare activity has been detected with a duration of ∌\sim 2 hours at these frequencies, showing the peak flare emission at 43 GHz leading the 22 GHz peak flare by ∌20\sim20 to 40 minutes. The overall characteristics of the flare emission are interpreted in terms of the plasmon model of Van der Laan (1966) by considering the ejection and adiabatically expansion of a uniform, spherical plasma blob due to flare activity. The observed peak of the flare emission with a spectral index Μ−α\nu^{-\alpha} of α\alpha=1.6 is consistent with the prediction that the peak emission shifts toward lower frequencies in an adiabatically-expanding self-absorbed source. We present the expected synchrotron light curves for an expanding blob as well as the peak frequency emission as a function of the energy spectral index constrained by the available flaring measurements in near-IR, sub-millimeter, millimeter and radio wavelengths. We note that the blob model is consistent with the available measurements, however, we can not rule out the jet of Sgr A*. If expanding material leaves the gravitational potential of Sgr A*, the total mass-loss rate of nonthermal and thermal particles is estimated to be ≀2×10−8\le 2\times10^{-8} M⊙_\odot yr−1^{-1}. We discuss the implication of the mass-loss rate since this value matches closely with the estimated accretion rate based on polarization measurements.Comment: Revised with new Figures 1 and 2, 17 pages, 4 figures, ApJ (in press

    The Highest Redshift Relativistic Jets

    Get PDF
    We describe our efforts to understand large-scale (10's-100's kpc) relativistic jet systems through observations of the highest-redshift quasars. Results from a VLA survey search for radio jets in ~30 z>3.4 quasars are described along with new Chandra observations of 4 selected targets.Comment: 5 pages, 2 figures, to appear in Extragalactic Jets: Theory and Observation from Radio to Gamma Ray, Eds. T.A. Rector and D.S. De Youn
    • 

    corecore